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Abstract

Simulation of semiconductor diode laser performance involves interaction be-
tween multiple physics domains. This report presents the governing equa-
tions and finite-element (FE) implementation of such a simulation, includ-
ing coupled calculation of electronic band structure, determined by solving
Schrödinger’s equation; carrier distribution and potential in the active region,
solved using a drift-diffusion model; electrostatic potential in the ohmic re-
gions, governed by Laplace’s equation; temperature distribution, governed
by Fourier’s law and the heat equation; and light propagation, described by
Maxwell’s equations. Preliminary simulation results are provided for stripe
lasers based on the GaAs/AlGaAs material system, including asymmetri-
cally waveguided devices. Important implementation issues are discussed,
particularly computation across multiple length scales and formulation of
appropriate boundary conditions. Simulation results are compared to pre-
vious calculations reported in the literature. Advancement of the technical
component is paralleled by development of a graphical user interface for ease
of use by non-experts in FE methods.



1 Introduction: Multiphysics Modeling

At the most fundamental level, the generation and characteristics of the
light produced by a semiconductor laser is due to the quantum mechanical
interaction of electrons, holes, photons, and phonons. Therefore, electron-
ics, optics, and temperature ultimately determine the performance of a laser
diode. The magnitude of injection current needed to operate a high powered
laser diode results in high temperatures, reducing the external efficiency and
operating lifetime. A comprehensive simulation models the coupling of op-
tics, temperature, and electronics in a self-consistent manner. However, such
comprehensive models often face numerous computational problems. One
such problem is due to the multiple length scales in a laser structure. The
thicknesses of the layers in a given diode vary between several orders of mag-
nitude. For example, the thickness of the substrate is typically on the order of
a hundred microns, whereas the thickness of the quantum well is less than ten
nanometers. In thick layers, classical characteristics dominate the behavior
of carriers. However, in the quantum well, the band structure becomes quan-
tized in energy. Further, the radical differences in the layer thicknesses leads
to computationally taxing simulations, owing to the mesh densities required
for an accurate solution. Therefore, a useful simulation must capture the
essential physical phenomena and simultaneously be numerically tractable
for the computational hardware available. We have developed a preliminary
graphical user interface that makes use of the Matlab scripting options in
COMSOL Multiphysics. This allows the user to perform simulations with-
out expertise in the finite-element method and still maintain control over the
device geometry and composition.

2 Electrothermal Model

The electrothermal model solves for the potential and temperature fields,
models the electron and hole transport. Ultimately, the current-voltage (IV)
characteristics of the diode are given by the transport model. Because of
the interaction between the drift and diffusion of carriers, the IV character-
istics are non-Ohmic or nonlinear. Joule, or resistive, heating depends on
both the current density and the electric field; and the Fermi-Dirac distribu-
tions that determine the nonequilibrium carrier densities depend on tempera-
ture. Therefore, the temperature field is strongly coupled to the electron-hole
transport model. The default simulation structure throughout this report is
similar to the one presented in [17]. A contour plot of the temperature over
a mirrored facet of the laser is shown in Fig. 2.
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Figure 1: Schematic illustrating the coupling between physical domains in
semiconductor lasers.
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Figure 2: Contour plot of temperature over a mirrored facet of a high powered
diode laser.

Optical heating is due to the absorption of photons by free carriers, and
therefore depends on the photon and free carrier densities [21]. Optical heat-
ing is not modeled in the present work, but is particularly important in long
wavelength lasers emitting around 1.55 µm [2].

2.1 Drift-Diffusion Model

The drift-diffusion equations are used to model the transport of electrons
and holes through the device. The nomenclature of the equations results
from the phenomena they model: carrier drift, due to the electric field; and
carrier diffusion, due to concentration gradients. The electrostatic potential
is determined by the solution to Poisson’s equation,

∇ · (−ε∇ψ) = q (p− n+N) (1)

where ψ is the electrostatic potential, ε = εsε0 is the permittivity, q the
electron charge, p the hole concentration, n the electron concentration, and
N = N+

D −N−A the doping profile. The model assumes the full ionization of
dopants.

Further, the drift-diffusion equations solve for the electron and hole con-
tributions to the current density. The current densities are determined by

3



continuity equations that balance the flux of carriers through a control vol-
ume with the rate at which carriers recombine. For electrons, that is,

∂n

∂t
=

1

q
∇ · jn −

∑
R, (2)

where jn is the electron contribution to the current density, and
∑
R is the

sum of the net recombination rates, which are defined as the recombination
rates minus the generation rates. An analogous equation holds for the hole
flux,

∂p

∂t
=

1

q
∇ · jp +

∑
R, (3)

where jp is the hole contribution to the hole current density. The total current
density is given by the j = jn + jp. The electron and hole contributions to the
current density are given by the quasi-Fermi formulation of the drift-diffusion
equations [29], [14]. The electron current density is calculated by,

jn = −qnµn∇ϕn. (4)

Similarly, the hole current density is,

jp = −qpµp∇ϕp. (5)

The continuity equations are implemented in steady state, so that the time
derivatives are zero. The quasi-Fermi potentials are related to the quasi-
Fermi energies as EFc = −qϕn and EFv = −qϕp. The electron and hole
mobilities are given by µn and µp, respectively. The calculation of carrier
mobility varies in complexity, ranging from simple, constant, low-field mobil-
ities; to computationally-taxing molecular dynamics simulations. Since the
current densities are directly proportional to the mobility, is important that
it be accurately determined. Additionally, the mobility must be computa-
tionally tractable in a reasonable time, and should reflect the dependence
of mobility on temperature. The mobilities in the present work are calcu-
lated using the semi-empirical, Caughey-Thomas-like parameters given in
[27]. The mobility model gives the dependence of temperature and doping,
and is well-suited for device simulation.

2.1.1 Carrier Concentrations

In general, the carrier concentrations can be determined by integrating the
density of states and occupation functions over all energies in a energy band,
such as

n =
∫ ∞

Ec

ρc (E) fc (E) dE (6)
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for the conduction band, where Ec is the conduction band minimum, ρc is
the density of states function, and fc is the Fermi-Dirac function for the
conduction band. A significant simplification can be made by assuming non-
degenerate doping levels [5]. This assumption is justified if the doping is
such that the equilibrium Fermi energy EF is at least 3kBT less than the
conduction band minimum, and at least 3kBT greater than the valence band
maximum. Under these conditions, the Fermi-Dirac distribution approaches
the Maxwell-Boltzmann distribution, and the bulk carrier density can be
calculated from the quasi-Fermi energies without the need for integration, as

n = ni exp [q (ψ − ϕn) / (kBT )] = Nc exp [(EFc − Ec) / (kBT )] , (7)

and

p = ni exp [q (ϕp − ψ) / (kBT )] = Nv exp [(Ev − EFv) / (kBT )] , (8)

where Nc and Nv are the effective density of states for the conduction and

valence bands, respectively. These are given by Nc = 2 [2πm∗ckBT/h
2]

3/2
and

Nv = 2 [2πm∗vkBT/h
2]

3/2
, where m∗v =

(
m
∗3/2
lh +m

∗3/2
hh

)2/3
for light and heavy

holes [14], [5]. The equalities above, wherein the carrier density is a function
of the quasi-Fermi energy, are useful in the calculation of the recombination
rates, which depend on the quasi-Fermi energies relative to the band extrema.

The above carrier density calculation is valid in the bulk. However, quan-
tization of the energy bands leads to a different density of states function for
carriers with energy less than the quantum well barrier energy. Additionally,
some carriers may have energy greater than the quantum well barrier; these
carriers obey the bulk carrier density equations (7) and (8). The total carrier
density calculated at the quantum well is the sum of these two. The density
of bound carriers in the quantum well is given by [18], [7] as

nbound =
m∗ckBT

πh̄2da

∑
n

ln {1 + exp [− (Ecn − EFc) / (kBT )]} , (9)

where the summation is over the bound states computed in Section 5. An
an analogous equation is used for bound holes.

2.2 Conduction Heat Transfer Model

The temperature field is computed using Fourier’s law and the heat equation.
The present model considers only Joule heating, although optical heating has
proven to be significant in some material systems, particularly InGaAsP-
based, long wavelength lasers [21]. The heat equation is,
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∇ · (−κ∇T ) = q′′′Joule, (10)

where κ is the thermal conductivity, T is the lattice temperature. The Joule
heating term is calculated using,

q′′′Joule = −j · ∇ψ. (11)

2.3 Boundary Conditions for Electrothermal Model

The boundary conditions for the electrothermal model are shown in Fig.
3. Far from the depletion regions at the device contacts, it is reasonable
to assume that the carrier concentrations relax to their equilibrium values
([4], pg 313; [1]). The potential will also be at its equilibrium value ψ0 on
the n-contact, calculated by eq. (12). If the device is in forward bias with
applied voltage Va, the p-contact will be at a potential of ψ0 + Va. In the
framework of quasi-Fermi levels, this implies that the quasi-Fermi energies far
from the junction return to the equilibrium Fermi level EF , which describes
the equilibrium carrier statistics. If the Fermi potential (ϕF = −EF/q) is
used as the reference, it may be shown that the n-contact uses the Dirichlet
conditions ϕn = 0, ϕp = 0, and ψ = ψ0. The p-doped contact uses the
Dirichlet conditions ϕn = Va, ϕp = Va, and ψ = ψ0 + Va. The metal-
semiconductor interface physics are not modeled because the semiconductor
materials near the n- and p-contacts are heavily doped (n+ and p+) to prevent
a large voltage drop across this barrier (pg. 175 of [9]). It is also worth noting
that the applied voltage must be gradually increased from zero in increments
of approximately kBT/q ≈ 0.026 V (at room temperature) until the desired
potential is reached [29].

The equilibrium potential distribution is a result of the diffusion of carri-
ers across the p-n junction, which sets up an electric field. The equilibrium
potential distribution is computed with [1],

ψ0 =
kBT

q

(
ln
[
nN0

ni

]
+ ln

[
pP0

ni

])
, (12)

with equilibrium electron concentration in the n-doped region,

nN0 =
|N |+

√
N2 + 4n2

i

2
, (13)

and equilibrium hole concentration in the p-doped region,

pP0 =
|N |+

√
N2 + 4n2

i

2
. (14)
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Figure 3: Boundary conditions for the electothermal model. The p-contact is
attached to an ideal heat sink at T = Ths, and at drive voltage ψ = ψ0 + Va.
The n-contact is thermally insulated, and serves as electrical ground.

The thermal boundary condition over the top contact has been investi-
gated experimentally [28] and it was determined that due to the presence
of a metal electrical contact, the boundary should be modeled as isother-
mal, rather than convective or insulated. This is naturally accounted for in
our model, since the metal contact included in the simulation has high ther-
mal conductivity and therefore facilitates a uniform heat distribution. All
other boundaries are thermally insulated, with the exception of the boundary
in contact with the heat sink, which uses the Dirichlet boundary condition
T = Ths to account for the heat sink temperature. This models the heat sink
as ideal.

3 Recombination Mechanisms

The process by which an electron in the conduction band falls into an empty
state in the valence band is known as recombination. The potential energy
lost by the electron during recombination is manifested in another form. In
the event that the energy is transformed to light, by the emission of a photon,
the process is known as radiative recombination. Stimulated and spontaneous
recombination are radiative recombination mechanisms. All other processes
are loosely termed nonradiative recombination. Nonradiative recombination
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can result in the creation of phonons, through Shockley-Read-Hall recombi-
nation; or the energy can be kinetic energy imparted to an electron or hole,
by way of Auger recombination (pg. 193-194 of [5]).

3.1 Stimulated Recombination

The key feature in the operation of a semiconductor is stimulated emission via
optical gain. Optical gain is achieved by the condition of population inver-
sion, wherein electrons are stimulated to the conduction band, leaving holes
in the valence band. Population inversion occurs when the potential across
the quantum well leads to a quasi-Fermi level separation greater than the
band gap [9], [7]. When population inversion has been achieved, optical gain
occurs by the interaction of the electromagnetic field with the electron-hole
pairs, leading to recombination which emits a photon of the same frequency
as the perturbing electromagnetic field. Optical gain gives the increase per
unit length in the number of photons, and thus its calculation depends on
the quasi-Fermi energy separation determined by the drift-diffusion model.
The stimulated emission rate (in units of per unit volume per unit time) is
related to the optical gain by,

Rst = vggNph (15)

where vg is the group velocity and Nph the photon density. The calculation
of these parameters is discussed in the subsequent subsections.

3.1.1 Optical Gain

Optical gain is defined as the proportional increase in the photon density per
unit length of active material. Parabolic band shapes and k-selection rules
are assumed. The expression for the optical gain as a function of the photon
energy is [3], [30], ch. 1 and 2 of [18],

g (Ei) =
πq2h̄ng,eff

ε0m2
0c0n2

rEi

∑
j

∑
n

∫ ∞
Eg+Ecn+Ejn

|MQW |2 ρred,j (E) (fcn,j − fvn,j)L (E) dE.

(16)
Here, c0 is the speed of light in a vacuum, m0 is the free electron mass, nr

is the refractive index, ng,eff is the group effective refractive index, Ei is the
photon energy, and j = hh, lh for heavy holes and light holes, respectively.
|MQW |2 is the squared transition matrix element for a quantum well given
by [30],

8



|MQW |2 =
3

4
|Mavg|2

1 +
Ecn

Ecn +
m∗

red,j

m∗
c

(E − Eg − Ecn − Ejn)

 , (17)

with

|Mavg|2 =
m0

6

(
m0

m∗
− 1

)
Eg (Eg + ∆)

Eg + 2∆/3
. (18)

m∗ is a modified effective mass that takes account for higher and lower con-
duction bands (taken to be 0.053m0 in GaAs), ∆ is the spin-orbit splitting
energy, and Eg is the band gap. The derivation of |Mavg|2 assumes that a
single factor of two is included in the reduced density of states to account for
spin degeneracy [30]. The reduced density of states function, including the
factor of two for spin degeneracy, is given by [18], [20],

ρred,j (E) =
4πm∗red,j

h2da

H (E − Eg − Ecn − Ejn) (19)

where H is the Heaviside unit step function. The reduced effective mass is
given by,

m∗red,j =
m∗cm

∗
j

m∗c +m∗j
, (20)

and the modified Fermi distribution for conduction band states is given by,

fcn,j =

{
1 + exp

[(
Ecn +

m∗red,j

m∗c
(E − Eg − Ecn − Ejn)− EFc

)
/ (kBT )

]}−1

,

(21)
and the modified Fermi distribution for valence band states is given by,

fvn,j =

{
1 + exp

[(
−Evn −

m∗red,j

m∗j
(E − Eg − Ecn − Ejn)− EFv

)
/ (kBT )

]}−1

.

(22)
Lastly, the spectral broadening function is a simple Lorentzian distribution,
given by [18] as,

L (E) =
1

π

h̄/τin

(E − Ei)
2 + (h̄/τin)2 , (23)

where τin is the intraband relaxation time, typically taken to be 0.1 ps [3],
[18]. Intraband relaxation or spectral broadening takes account for the un-
certainty in the energy states [7]. The material gain spectrum is plotted as
as function of photon energy in Fig. 4.

9



1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75
−3000

−2000

−1000

0

1000

2000

3000

O
p
ti
c
a
l 
g
a
in
 (
c
m
−
1
)

Photon energy (eV)

Figure 4: Material gain as a function of photon energy for 8 nm GaAs single
quantum well device with a carrier concentration of 1019 cm−3.

3.1.2 Photon Group Velocity

The photon group velocity is defined as [9], [18]

vg =
c0

ng,eff

, (24)

where c0 is the speed of light in a vacuum, and ng,eff is the group effective
refractive index, which is given approximately by,

ng,eff ≈ nr,eff −
∂nr,eff

∂λ0

λ0, (25)

The group refractive index is found by using a forward difference approxi-
mation to ∂nr,eff/∂λ0.

3.1.3 Photon Density

The number of photons per unit volume in the cavity is determined by an
energy balance written for the optical cavity. The equation balances the
contributions of stimulated emission, spontaneous emission, and the rate of
photon loss via the mirror and internal losses. The steady-state balance
equation for the photon density in the quantum well is [9], [7], [14],

10



vggNph +R′sp −
vg

Γ

(
αi +

1

2L
ln
[

1

R1R2

])
Nph = 0. (26)

The term R′sp gives the spontaneous emission emitted into the lasing
mode, Γ is the optical confinement factor, αi is the internal losses (taken to
be αi = 5 cm−1 [7]), and R1, R2 are the mirror refectivities. Solving equation
26 for Nph yields,

Nph =
R′sp

vg

(
1
Γ

[
αi + 1

2L
ln
(

1
R1R2

)]
− g

) (27)

where the spontaneous emission into the lasing mode is given by [7],

R′sp =
Γvggnsp

V
, (28)

where V is the quantum well volume, with the population inversion factor
given by,

nsp = {1− exp [(Ei −∆EF ) / (kBT )]}−1 . (29)

where ∆EF = EFc − EFv is the quasi-Fermi level separation.

3.2 Spontaneous Recombination

For injection currents below the threshold current, Rsp � Rst. The emitted
light is of many polarizations and frequencies. Within the electrothermal
drift-diffusion simulation, spontaneous emission is not modeled. However, the
optical spectrum of spontaneous emission can be determined by a calculation
similar to that of the optical gain spectrum. The expression used to calculate
the spontaneous emission rate is [18],

rsp (Ei) =
q2nrE

πm2
0h̄

2c3
0ε0

∑
n

∑
j

|Mavg|2 ρred,j (E) fcn,j (1− fvn,j) , (30)

where nr is the refractive index of the quantum well material, Ei is the photon
energy, and |Mavg|2 is the magnitude of the energy-independent momentum
matrix element, given by equation (18).

The total spontaneous emission rate is found by integrating over all pho-
ton energies [6] so that,

Rsp =
∫ ∞

0
rsp (E) dE, (31)
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Figure 5: Spontaneous emission rate as a function of photon energy for 8 nm
GaAs single quantum well device with a carrier concentration of 1019 cm−3.

It is not necessary to convolve the spontaneous emission function with a
broadening function to determine the total rate, but it is appropriate in a cal-
culation of the spontaneous emission spectrum [18], [30], [6]. The calculated
spontaneous emission spectrum is shown in Fig. 5.

3.3 Nonradiative Recombination

Two types of nonradiative recombination present in a laser diode are Shockley-
Read-Hall (SRH) recombination and Auger recombination. SRH recombina-
tion is due to the presence of point defects, and the rate at which carriers
recombine due to SRH recombination is given by, [1],

RSRH =
np− n2

i

τp (n+ ni) + τn (p+ ni)
(32)

4 Optical Model

The optical model calculates the optical mode shape. The optical mode shape
determines the optical confinement factor Γ, which describes the fraction of
light that is confined to the quantum well. The remaining fraction is absorbed
by the waveguiding layers and leads to optical heating. The optical model

12



reduces the diode geometry to the optical region, which we define as the
portion of the waveguiding structure where a non-negligible portion of light
is confined. This includes the n- and p-doped cores and cladding layers, and
the quantum well.

4.1 Calculation of Optical Mode

The optical mode shape is determined by the solution of the Helmholtz equa-
tion, which is derived from Maxwell’s equations,

∇2E0 + k2
0

(
n2

r − n2
r,eff

)
E0 = 0, (33)

where E0 = E0 (x, y) is the optical mode shape, nr,eff is an eigenvalue, k0 =
2π/λ0 is the wave number in a vacuum, and nr is the complex refractive
index, which contains information about the gain or absorption coefficient,

n2
r =

(
n̄r + i

g

2k0

)2

(34)

in the quantum well, where n̄r is the real part of the refractive index, calcu-
lated by the model presented in [10] for AlxGa1−xAs. In the passive layers,
the substitution g → −α is made to account for absorption. This link is
not yet implemented in the present work, because the temperature must be
mapped from the electrothermal simulation to the optical model to give the
temperature dependence of n̄r.

Since k0 depends on λ0, Schrödinger’s equation must first be solved to
determine the wavelength. The Helmholtz equation is solved in the x-y plane
of the laser, with the wave propagating in the z-direction. The boundary
conditions used to solve the optical simulation assume that the mode shape
goes to zero at the boundaries of the optical region. The simulation uses a y
cross-section of the fundamental waveguide mode profile and normalizes the
profile such that, ∫ ∞

−∞
E2

0(y)dy = 1 (35)

A normalized optical mode distribution for a symmetric waveguide is
shown in Figure 6. The waveguide for the structure used to calculate Figure
6 is symmetric with respect to the geometry and the refractive indices. The
optical confinement factor is defined as the overlap of the optical mode shape
with the active region. That is,

Γ =

∫ da
0 E2

0(y)dy∫∞
−∞E2

0(y)dy
=
∫ da

0
E2

0(y)dy (36)

13



2 2.1 2.2 2.3 2.4 2.5

x 10
−5

0

0.5

1

1.5

2
x 10

6

O
p

ti
c
a

l 
M

o
d

e
 I
n

te
n

s
it
y
 (

1
/m

)

y−coordinate (m)

3

3.2

3.4

3.6

3.8

R
e

fr
a

c
ti
v
e

 I
n

d
e

x

p-cladding n-cladding
wave-

guide

Figure 6: Normalized optical mode distribution and refractive index variation
with position for a symmetric waveguide.

4.2 Asymmetric Waveguiding: SHEDS Lasers

Long wavelength (λ0 = 1.55 µm) laser structures utilizing asymmetric waveg-
uides have been shown to be advantageous experimentally [19], [15], [13] and
theoretically [26], [21], [23], [22], [24]. Such lasers are known as Super High
Efficiency Diode Structures, or SHEDS lasers. The large density of free carri-
ers in the active region of a laser diode gives rise to free carrier absorption [21]
and bimolecular recombination [25] in the p- and n-doped core and cladding.
These phenomena reduce the external efficiency of the laser. Free carrier
absorption occurs as a result of the overlap of the optical mode shape with
the highly doped cladding layers [26]. Quantum mechanical calculations have
proved that the contributions to free carrier absorption by interconduction
and intraconduction band absorption are negligible in laser diodes [12]. The
dominant process is intervalence band absorption (IVBA) [22].

Proposed solutions to decrease the free carrier absorption include broad-
ening the thickness of the core for better optical confinement, or using an
asymmetric waveguide with respect to the position of the quantum well.
The effects of the latter are explored in this section. The p-cladding is highly
lossy, due to two effects: the p-material has a larger free-carrier absorption
cross-section than that of the n-material, and a higher doping concentration
to compensate for the low hole mobility (relative to electron mobility) [23].
Therefore, optimal designs seek to reduce the overlap of the optical mode
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Figure 7: Normalized optical mode distribution and refractive indices for an
asymmetric waveguide (geometry and material properties from [22]). Note
the overlap of the optical mode with the n-cladding and reduced overlap with
the p-cladding relative to the symmetric waveguide of Fig. 6.

shape with this layer. This is achieved not only by geometric asymmetry,
but by index-guiding the optical mode by using a material with higher refrac-
tive index for the n-cladding relative to that of the p-cladding. Index-guiding
in this manner does increase the overlap of the optical mode shape with the
n-cladding. This is illustrated in Fig. 7, which uses material properties and
dimensions from [22]. However, the n-cladding can be made much less lossy
than the p-cladding in terms of free carrier absorption, because the higher
electron mobility allows for a lower magnitude of donor doping concentra-
tion to achieve the same electrical conduction properties. The optical mode
shape determines the free carrier absorption at a point, and therefore the
volumetric heating term q′′′opt.

5 Eigenenergy Calculation

In the quantum well, the conduction and valence bands develop into discrete
energy subbands. The calculation of the allowed subband minima follows
a standard quantum mechanical treatment (see, for example, [16], [3]) for
a single particle in a finite potential well. The carriers are bound to the
potential well by the band energy offsets between the quantum well material
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and the barrier materials. The single electron, time-independent Schrodinger
equation is, (

− h̄2

2m
∇2 + V

)
ψn = Enψn, (37)

where m is the appropriate effective mass (m∗c for the conduction band, m∗hh

for the heavy hole valence band, or m∗lh for the light hole valence band), V
is the form of the potential, and ψn is the wave function of the nth level.
The nth eigenenergy is given by En (for a specific band calculation, En →
Ecn, Ehhn, or Elhn. We solve the time-independent Schrödinger equation in
the dimension perpendicular to the plane of the quantum well, which we
have designated as the y-direction. Assuming that the potential well is of
the form,

V (y) =

{
0 inside the well
∆E outside the well

(38)

where ∆E is the appropriate band offset (∆Ec, ∆Ehh, or ∆Elh) between the
quantum well and the barrier material. This parameter is calculated assum-
ing a conduction to valence band offset ratio of 3:2 for AlxGa1−xAs (barriers)
to GaAs (quantum well) heterojunctions [14]. The wave function and its first
derivative must be continuous across the heterojunction. Additionally, the
wave function must go to zero far away from the well. The resulting solution,
using (38) as the potential, is

tan

da

2

√
2m (∆E − En)

h̄

 =
(

∆E

En

− 1
)−1/2

n = 1, 3, 5,..., (39)

cot

da

2

√
2m (∆E − En)

h̄

 = −
(

∆E

En

− 1
)−1/2

n = 2, 4, 6,..., (40)

where da is the thickness of the well. These transcendental equations must
be solved numerically for En. The solutions can represented graphically by
defining new parameters,

η ≡ da

2

√
2m (∆E − En)

h̄
, (41)

ζ ≡
(

∆E

En

− 1
)−1/2

. (42)
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with the ζ curve. The solutions are indicated (in terms of η) as + marks.

The graphical representation of the solution is shown in Fig. 8. The elec-
tron eigenenergy solutions are also plotted along with the conduction band
through the well and barriers in Fig. 9. The optical wavelength is inversely
proportional to the total difference in energy between the lowest conduction
and valence sub-bands. Therefore, this calculation must be performed prior
to the optical mode and gain calculations.

It is possible to couple the Poisson, Schrödinger, and current continuity
equations [8], [11] in a semi-classical treatment, but this would require solving
Schrödinger’s equation at each iteration of the drift-diffusion solver. There-
fore, following [14], the eigenenergies are calculated prior to the drift-diffusion
module and are assumed to be decoupled.

6 Conclusion

A two-dimensional electrothermal model for high-powered diode lasers has
been developed and discussed. A drift-diffusion model has been formulated
to include recombination mechanisms relevant to a diode laser. A thermal
model coupled to the drift-diffusion solver has been implemented to model
the effects of temperature on electron-hole transport. An optical model has
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Figure 9: The allowed electron eigenenergies in an 8 nm GaAs quantum well
(red) along with the conduction band profile through the y-direction.

been developed to determine the optical confinement factor, and therefore
the portion of light absorbed by the waveguiding layers. Initial results for
an asymmetric waveguide system have shown that the optical mode can be
shifted into the n-doped cladding layer, which is less lossy than the p-doped
cladding. Further, the coupling of the optical gain to the complex index of
refraction used in the optical mode calculation has been discussed, as well as
the relation of optical gain to the stimulated emission rate used in the drift-
diffusion model. Lastly, a decoupled, one-dimensional quantum mechanical
simulation has been solved to determine the energy states in the quantum
well.
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Nomenclature

MQW Quantum well transition matrix element

αi Internal losses

∆EF Quasi-Fermi level separation

∆ Spin-orbit splitting energy

Γ Optical confinement factor

h̄ Reduced Planck constant, h̄ = h/(2π)

κ Thermal conductivity

λ0 Wavelength in vacuum

L Lorentzian broadening function

µn Electron mobility

µp Hole mobility

∇·, ∇ Divergence operator, gradient operator, respectively

ψ Electrostatic potential

ψ0 Equilibrium potential distribution

ρred,j Reduced density of states for jth conduction band

τn Shockley-Read-Hall relaxation time for electrons

τp Shockley-Read-Hall relaxation time for holes

τin Intraband relaxation time

E0 Optical mode shape

jn Electron current density

jp Hole current density

εs, ε0, ε Relative static permittivity, vacuum permittivity, and abso-
lute static permittivity, respectively

ϕn Electron quasi-Fermi potential
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ϕp Hole quasi-Fermi potential

c0 Speed of light in vacuum

Ec Conduction band minimum (bulk)

EF Equilibrium Fermi energy

Eg QW band gap

Ei Photon energy

Ev Valence band minimum (bulk)

Ecn nth quantized conduction band minimum

EFc Electron quasi-Fermi energy

EFv Hole quasi-Fermi energy

Ejn nth quantized j valence band minimum

fcn,j Modified Fermi distribution for conduction band

fvn,j Modified Fermi distribution for valence band

g Optical gain

j j = hh, lh for heavy holes and light holes, respectively

k0 Wave number in vacuum

kB Boltzmann constant

L Cavity length, perpendicular to the mirror planes

m∗ Modified effective mass

m∗c Conduction band density of states effective mass

m∗v Valence band density of states effective mass

Mavg Bulk transition matrix element

m∗hh Heavy hole effective mass

m∗lh Light hole effective mass

m∗red,j Reduced effective mass for the jth valence band
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n Electron concentration

N , N+
D , N−A Doping profile as a function of position, ionized donor con-

centration, ionized acceptor concentration, respectively

Nc Effective density of states for conduction band

ni Intrinsic carrier density

nr, n̄r Complex refractive index and its real part, respectively

Nv Effective density of states for valence band

ng,eff Group effective refractive index

nN0 Equilibrium electron concentration in the n-doped region

Nph Photon density

nr,eff Complex effective refractive index eigenvalue

nsp Population inversion factor

p Hole concentration

pP0 Equilibrium hole concentration in the p-doped region

q Electron charge

q′′′Joule Volumetric Joule heating

R Recombination mechanisms

R1, R2 Mirror reflectivites

R′sp Spontaneous emission rate emitted into the lasing mode

Rst Stimulated emission recombination rate

T Temperature

Ths Heat sink temperature

V Volume of the active region

Va Applied voltage

vg Group velocity of photons
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